ggplot2

library(ggplot2)

Boxplot

ToothGrowth$dose <- as.factor(ToothGrowth$dose)


ggplot(ToothGrowth,
       aes(x = dose, y = len, fill = dose)) + 
geom_boxplot() +
guides(fill = "none")

ggplot(ToothGrowth,
       aes(x = dose, y = len, col = dose)) + 
geom_boxplot() + 
coord_flip()

1.
Chollet F. Deep learning with R. Second edition. Shelter Island: Manning; 2022.
2.
Gatto L. An Introduction to Machine Learning with R. 2020.
3.
Song Y, Millidge B, Salvatori T, Lukasiewicz T, Xu Z, Bogacz R. Inferring neural activity before plasticity as a foundation for learning beyond backpropagation. Nat Neurosci. 2024 Feb;27(2):348–58.
4.
Jones E, Harden S, Crawley MJ. The R book. Third edition. Hoboken, NJ: Wiley; 2022.
5.
Field A, Miles J, Field Z. Discovering statistics using R. Repr. Los Angeles, CA, USA: Sage; 2014.
6.
Yap BW, Sim CH. Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation. 2011 Dec;81(12):2141–55.
7.
Perezgonzalez JD. Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing. Front Psychol. 2015 Mar;6:223.
8.
Lantz B. Machine learning with R: Learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data, fourth edition. 4th ed. Place of publication not identified: Packt Publishing; 2023.
9.
Carmona Pontaque F. Álgebra Matricial en Estadística. Análisis Multivariante. Fundació Universitat Oberta de Catalunya; 2024.
10.
Carmona Pontaque F. Modelos lineales. Ediciones de la Universidad de Barcelona; 2004.
11.
Faraway JJ. Linear models with R. Second edition. Boca Raton London: CRC Press, Taylor & Francis; 2014. (Texts in statistical science).